

Group 2

Final Presentation

Prepared by:

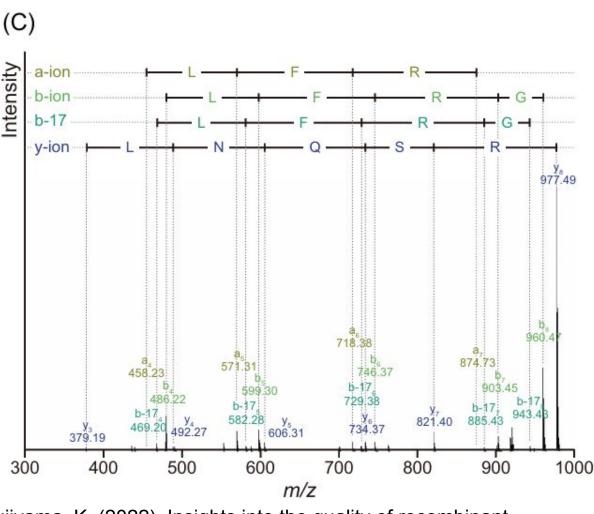
John Daniel P. Ong (Philippines) Nafisa Pangetsu (Indonesia)

GROUP QUESTIONS

Technologies that we learned1.from researches at OsakaUniversity

Technologies learned from the researches at Osaka U

Protein Analysis of Samples (SDS-PAGE; nanoLC-MS/MS)



- chromatography analyzed recombinant IFN-y.
- •C-terminal analysis: Enzymatic digestion, gel separation, and mass spectrometry identified cleavage sites.
- •Structural differences: Variations in post-translational modifications and degradation impact integrity and function.

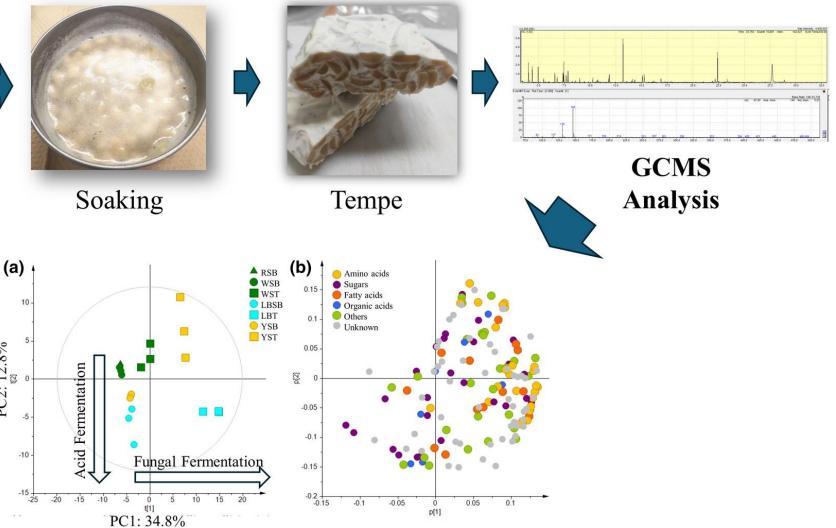
Reference: Kajiura, H., Tatematsu, K., Nomura, T., Miyazawa, M., Usami, A., Tamura, T., Sezutsu, H., & Fujiyama, K. (2022). Insights into the quality of recombinant proteins produced by two different Bombyx mori expression systems. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-22565-7

(B)

MKYTSYFLALLLCGLLGFSGSYGQGQFFREIENLKEYF**NAS**SP DVAKGGPLFSEILKNWKDESDKKIIOSOIVSFYFKLFENLKDN QVIQRSMDIIKQDMFQKFLNGSSEKLEDFKKLIQIPVDDLQIQ RKAINELIKVMNDLSPKSNLRKRKRSONLFRG¹⁶¹RRAST m/z 976.52

Technologies learned from the researches at Osaka U

Food Metabolomics (GC-MS; LC-MS)


JOURNAL ARTICLE

Metabolite profiling highlights the effect of microbial intervention in the soaking step of tempe

Rifqi Ahmad Riyanto, Eiichiro Fukusaki, Sastia Prama Putri 🐱

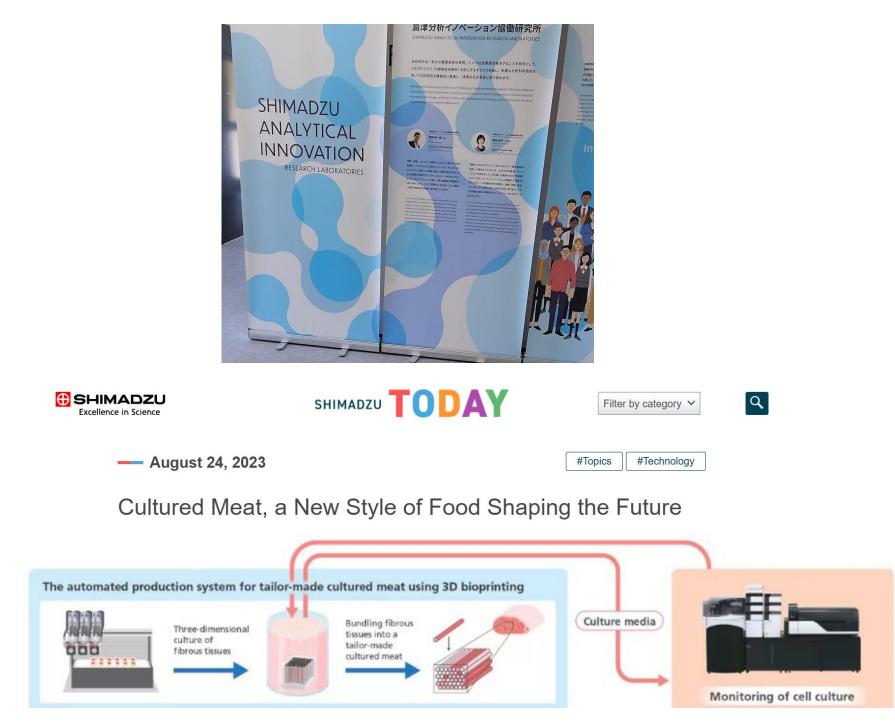
International Journal of Food Science and Technology, Volume 59, Issue 10, October 2024, Pages 7414-7425, https://doi.org/10.1111/ijfs.17481 Published: 30 August 2024 Article history v

Microbial Interventions

12.8%

PC2:

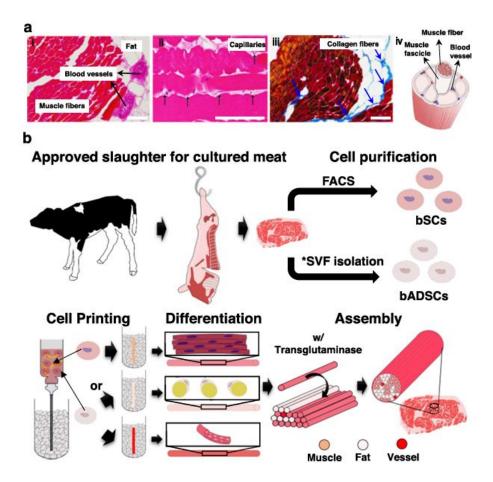
- •Metabolomics identifies biochemical changes during fermentation.
- •GC-MS analysis detects key metabolites affecting food quality.
- •PCA reveals fermentation-driven metabolic shifts for optimization.


Reference: Rivanto, R. A., Fukusaki, E., & Putri, S. P. (2024). Metabolite profiling highlights the effect of microbial intervention in the soaking step of tempe. International Journal of Food Science & Technology, 59(10), 7414–7425. https://doi.org/10.1111/ijfs.17481

Metabolite Profiling

Technologies learned from the researches at Osaka U ARTICLE https://doi.org/10.1038/s41467-021-25236-9

Cultured Meat (3D bioprinting; LC; LC-MS; GC-MS) \bullet



Reference: Cultured meat, a new style of food shaping the future. (2023, August 24). SHIMADZU TODAY | SHIMADZU CORPORATION. https://www.shimadzu.com/today/20230824-1.html

Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting

Dong-Hee Kang¹, Fiona Louis¹, Hao Liu¹, Hiroshi Shimoda³, Yasutaka Nishiyama⁴, Hajime Nozawa⁵, Makoto Kakitani⁵, Daisuke Takagi⁶, Daijiro Kasa⁷, Eiji Nagamori⁸, Shinji Irie^{2,9}, Shiro Kitano^{2,9} & Michiya Matsusaki₀ ^{1,2⊠}

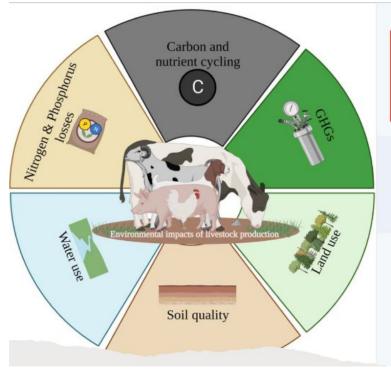
Reference: Kang, DH., Louis, F., Liu, H. et al. Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nat Commun 12, 5059 (2021). https://doi.org/10.1038/s41467-021-25236-9

After visiting Shimadzu Co. at 2. Osaka University, how has your knowledge and understanding improved?

How these technologies improved our knowledge and understanding of cultured meat

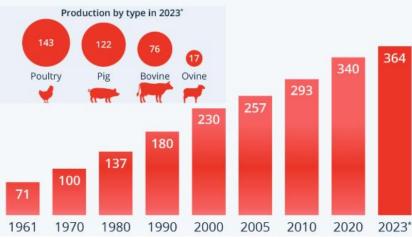
Cellular

Agriculture

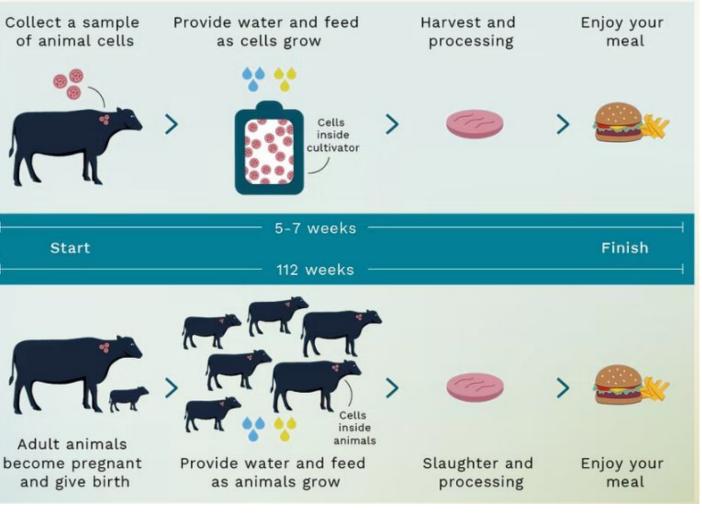

Production

Method

Animal

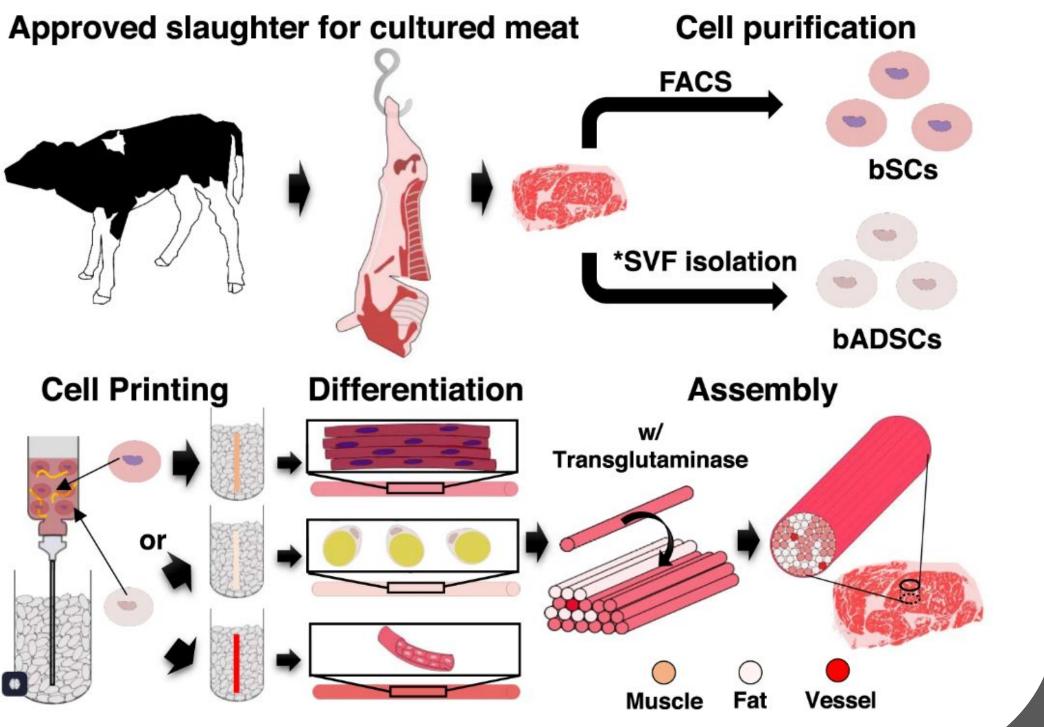

Agriculture

Before:


The Growing Global Hunger For Meat

Worldwide annual production of meat (in million tonnes - carcass weight equivalent)

Meat Type Comparison

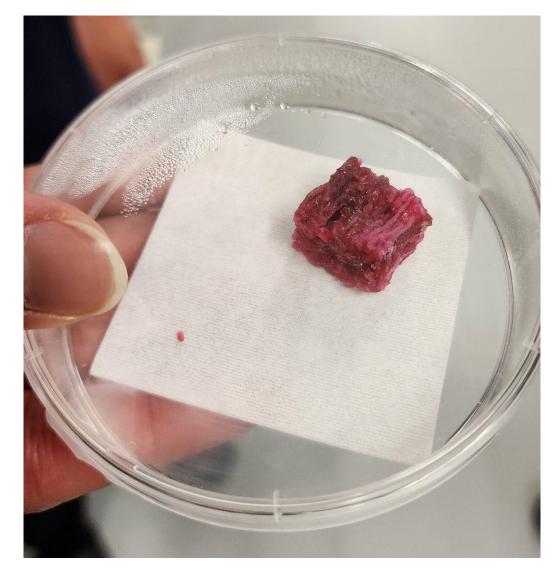

Aspect	Plant-based approach	Animal-based approach	Cell-based approach
Environmental impact	Lower greenhouse gas emissions, water usage, and land degradation; specific crops (e.g., nuts) can still be resource-intensive	High greenhouse gas emissions (14-51%), excessive water use (100x more than plants), and extensive land degradation	Significantly reduce resource use and environmental impacts, including energy, greenhouse gas emissions, land, and water use, compared to animal-based meat.
Production method	Proteins extracted from plants (e.g., soy, peas), mixed with nutrients, and processed to mimic meat texture using extrusion or 3D printing	Rearing and slaughtering livestock, requiring large-scale agriculture for feed and extensive land for grazing	Production involves isolating and culturing muscle and fat cells, formulating xeno-free culture media, developing scaffolds for cell growth, and designing bioreactors
Nutritional content	Offers fiber, low cholesterol, and fewer calories; fortified to meet dietary needs; potential nutrient loss in processing	High in protein, vitamin B12, and essential fats; associated with increased risks of heart disease and chronic conditions	The potential for customizable nutrition profiles through differentiated muscle and fat cells, media supplementation, and genetic modification

How these technologies improved our knowledge and understanding of cultured meat

<u>After:</u> \bullet

- Cell isolation and cell stock
- Bioink design *
- 3D bioprinting *
- Fabrication method of each fiber by differentiation
- Assembly method for wagyu cultured meat
- Final product **

Reference: Kang, DH., Louis, F., Liu, H. et al. Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nat Commun 12, 5059 (2021). https://doi.org/10.1038/s41467-021-25236-9


How these technologies improved our knowledge and understanding of cultured meat

• <u>After:</u>

3D Bioprinting Equipment

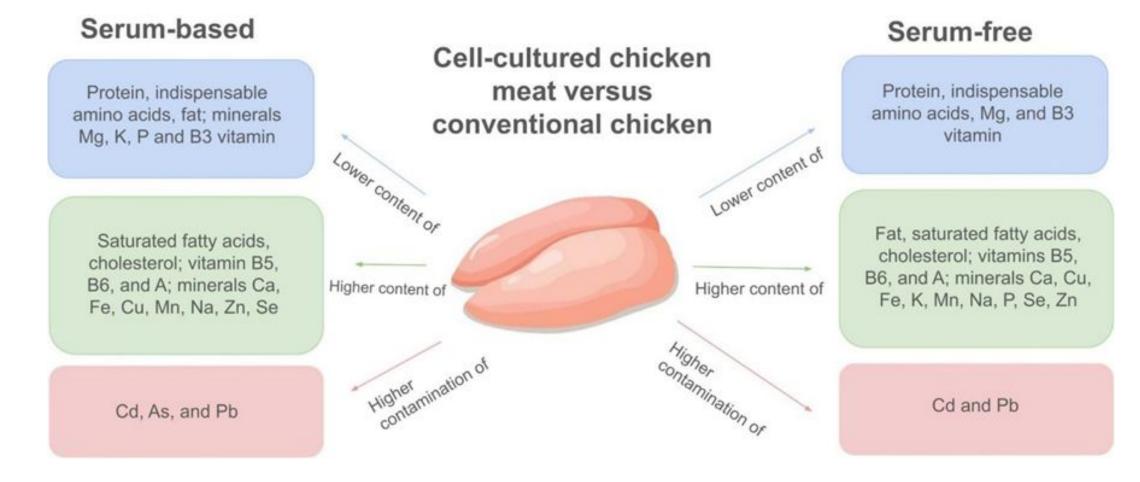
Final Product

Examples of animal 3. cell-cultured meat (besides mammalian cell-cultured meat)

Examples of animal cell-cultured meat

• Poultry

Journal of Food Composition and Analysis Volume 135, November 2024, 106663



Assessment of the potential nutritional value of cell-cultured chicken meat in light of European dietary recommendations

Dominika Sikora ^{a b} $\stackrel{\circ}{\sim}$ $\stackrel{\boxtimes}{\simeq}$, Piotr Rzymski ^a

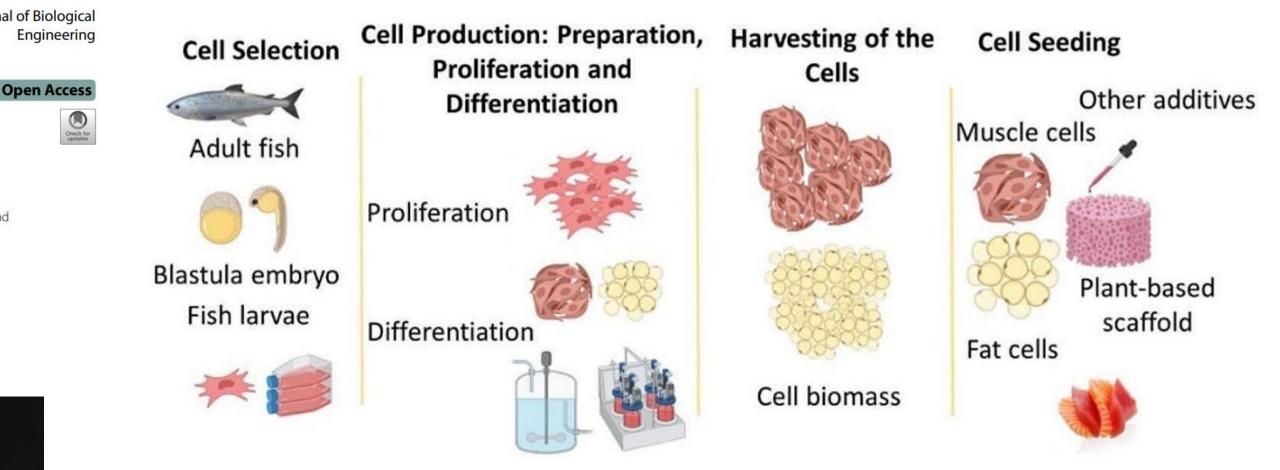
https://www.goodmeat.co/

Pasta dish with Good Meat's cultivated chicken meat in Singapore. Eat Just's Good Meat became the first FDA and Singapore-approved cultured chicken, already served in restaurants

Sikora, D., & Rzymski, P. (2024). Assessment of the potential nutritional value of cell-cultured chicken meat in light of European dietary recommendations. Journal of

Examples of animal cell-cultured meat

Seafood


Goswami et al. Journal of Biological Engineering (2024) 18:43 https://doi.org/10.1186/s13036-024-00436-1

Journal of Biological Engineering

REVIEW

Cell-cultivated aquatic food products: emerging production systems for seafood

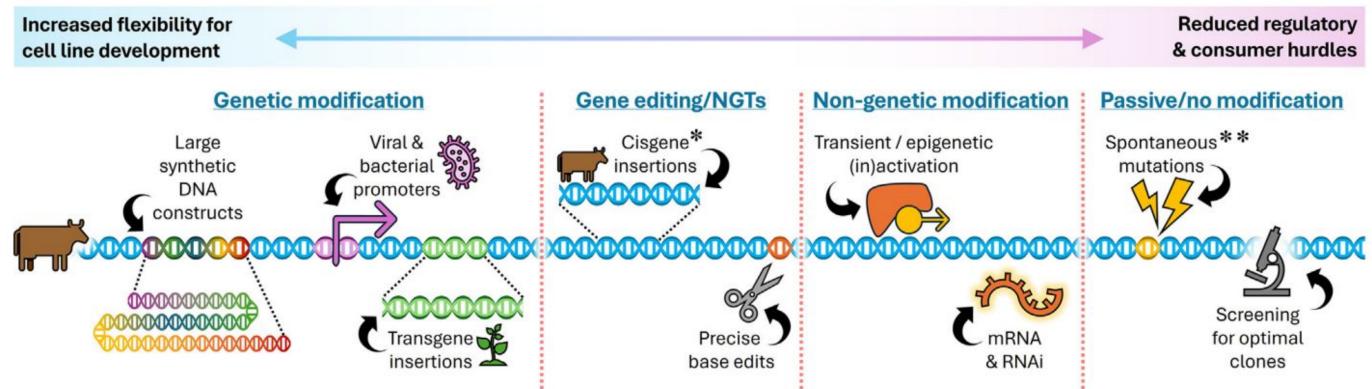
Mukunda Goswami^{1*}, Reza Ovissipour², Claire Bomkamp³, Nitin Nitin⁴, Wazir Lakra⁵, Mark Post^{6,7} and David L. Kaplan^{8*}

https://www.bluenalu.com/

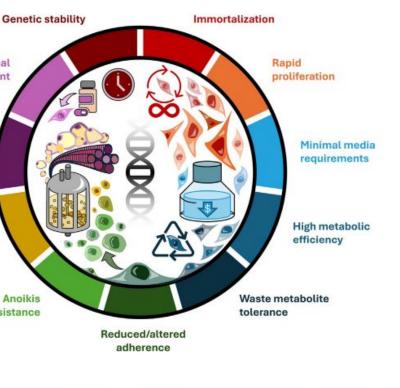
Bluefin tuna (BlueNalu) – created using fish muscle stem cells.

Goswami, M., Ovissipour, R., Bomkamp, C., Nitin, N., Lakra, W., Post, M., & Kaplan, D. L. (2024). Cell-cultivated aquatic food products: emerging production systems for seafood. Journal of Biological Engineering, 18(1), 43. 10.1186/s13036-024-00436-1

4. What technology can we develop to get better meat?


Technology to get better meat

Genetic Engineering


iScience

Perspective Unlocking the potential of cultivated meat through cell line engineering

Camilo Riquelme-Guzmán,¹ Andrew J. Stout,^{1,2} David L. Kaplan,¹ and Joshua E. Flack^{3,*}

Riquelme-Guzmán, C., Stout, A. J., Kaplan, D. L., & Flack, J. E. (2024). Unlocking the potential of cultivated meat through cell line engineering. Iscience, 27(10). https://doi.org/10.1016/j.isci.2024.110877

Nutritional

enhancement

Robust

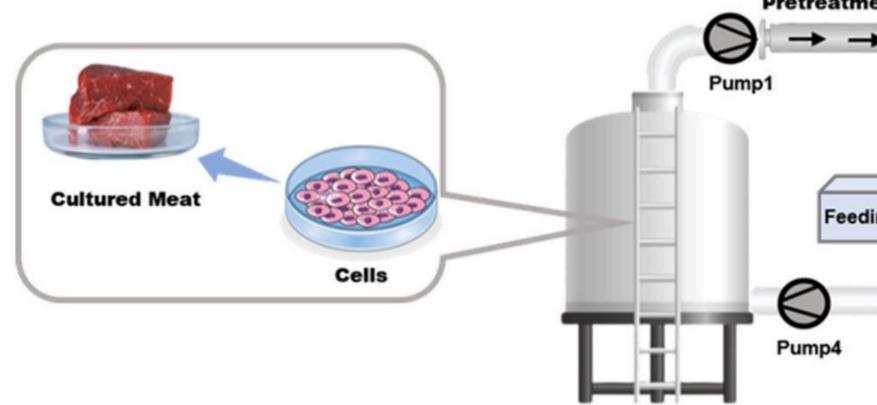
Shear stress

resistance

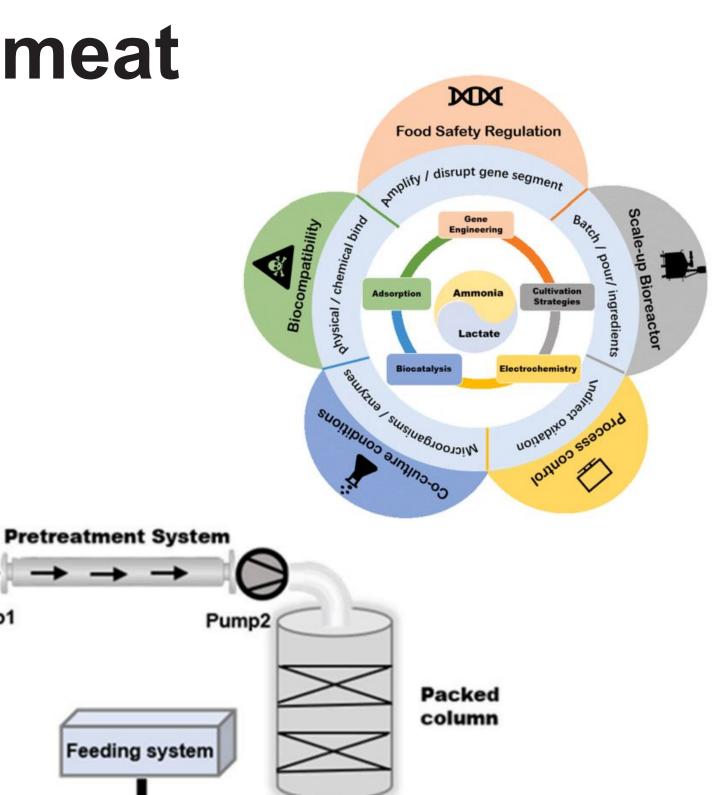
Anoiki resistance

differentiation

Technology to get better meat


Optimized Growth Media

Trends in Food Science & Technology 138 (2023) 564-576


Cell culture medium cycling in cultured meat: Key factors and potential strategies

Ming Yang^{a,b}, Qiong Wang^b, Yuyan Zhu^{c,d}, Kuichuan Sheng^{a,b,e}, Ning Xiang^{f,g,**}, Ximing Zhang^{a,b,e,h,*}

Bioreactor

Yang, M., Wang, Q., Zhu, Y., Sheng, K., Xiang, N., & Zhang, X. (2023). Cell culture medium cycling in cultured meat: key factors and potential strategies. Trends in Food Science & Technology. https://doi.org/10.1016/j.tifs.2023.06.031

Pump3

5. What are YOU (WE) concerned about?

Our concerns

Category	Concern	Description	
Societal Concerns	Consumer Acceptance	Many people may see lab-grown meat as "unnatural" or unappetizing.	
	Economic Disruption	The traditional livestock industry may suffer job losses.	
	Regulatory Challenges	Governments must create new safety, labeling, and production standards.	
Ethical Concerns	Equitable Access	High costs could make cultured meat inaccessible to lower-income groups.	
	Religion and Cultural Acceptance	Some religious groups may question its compatibility with halal, kosher, or cultural diets.	
Health Concerns	Long-Term Health Effects	Unknown long-term effects due to artificial growth factors and scaffold materials.	
	Nutritional Composition	Lab-grown meat may lack the full nutrient profile of traditional meat unless fortified.	
Environmental Concerns	Energy Consumption	Cultured meat production requires significant electricity, potentially offsetting sustainability benefits.	
	Resource Use	The impact on water, land, and emissions depends on production methods and scalability.	
Technological Concerns	Corporate Control and Patents	Large corporations could monopolize production, limiting competition and accessibility.	
	Scalability and Cost	Current production methods are expensive and may take years to become cost-effective.	

REFERENCES:

Cultured meat, a new style of food shaping the future. (2023, August 24). SHIMADZU TODAY | SHIMADZU CORPORATION. https://www.shimadzu.com/today/20230824-1.html

Kajiura, H., Tatematsu, K., Nomura, T., Miyazawa, M., Usami, A., Tamura, T., Sezutsu, H., & Fujiyama, K. (2022). Insights into the quality of mori expression systems. recombinant proteins produced by two different Bombyx Scientific Reports. *12*(1). https://doi.org/10.1038/s41598-022-22565-7

Kang, DH., Louis, F., Liu, H. et al. Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nat Commun 12, 5059 (2021). https://doi.org/10.1038/s41467-021-25236-9

Goswami, M., Ovissipour, R., Bomkamp, C., Nitin, N., Lakra, W., Post, M., & Kaplan, D. L. (2024). Cell-cultivated aquatic food products: emerging production systems for seafood. Journal of Biological Engineering, 18(1), 43. 10.1186/s13036-024-00436-1

Riquelme-Guzmán, C., Stout, A. J., Kaplan, D. L., & Flack, J. E. (2024). Unlocking the potential of cultivated meat through cell line engineering. Iscience, 27(10). <u>https://doi.org/10.1016/j.isci.2024.110877</u>

Riyanto, R. A., Fukusaki, E., & Putri, S. P. (2024). Metabolite profiling highlights the effect of microbial intervention in the soaking step of tempe. International Journal of Food Science & Technology, 59(10), 7414–7425. https://doi.org/10.1111/ijfs.17481

Sikora, D., & Rzymski, P. (2024). Assessment of the potential nutritional value of cell-cultured chicken meat in light of European dietary recommendations. Journal of Food Composition and Analysis, 135, 106663. https://doi.org/10.1016/j.jfca.2024.106663

Yang, M., Wang, Q., Zhu, Y., Sheng, K., Xiang, N., & Zhang, X. (2023). Cell culture medium cycling in cultured meat: key factors and potential strategies. Trends in Food Science & Technology. https://doi.org/10.1016/j.tifs.2023.06.031

ありかとう ございます *