
CELL-CULTURED MEAT: INNOVATIONS, POSSIBILITIES, AND CHALLENGES

Group 1

Lopez Mark Kevin Lin, Yu-Chen Isaac Tan Yun Hann

Technologies in Osaka University

Applications of Growth Factor

- Cosmetics and Medicine (e.g. collagen production & skin regeneration; androgenic alopecia)
- Component of Animal Cell Culture
 Medium (GFs in bovine serum)
 - Gene Modification Technology
 - S. cerevisiae EGF
 - Chinese Hamster Cell anticancer

Metabolomics Approach

- Large Scale Analysis of Metabolites in Plants and Food Products (Exotic Foods)
 - Uses spectroscopy, spectrometry, purification, statistical analysis

Analysis of Proteins and/or Metabolites

- Liquid Chromatography Mass Spectrometry (e.g. nanoLC-MS/MS)
 - analytical technique combining physical separation capabilities of LC and mass spectrometry analysis capabilities of MS

Technologies in Osaka University

Wagyu Beef Culture Meat Production

1. Cell Isolation and cell stock

 Wagyu beef meats are sent directly from contract farms and each cell type is collected and preserved

1. Bioink Design

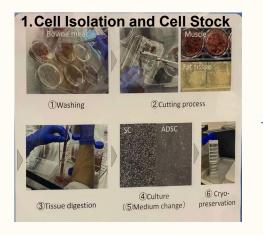
 Cells and biomaterials are mixed to make bioink for 3D printing

1. 3D Bioprinting

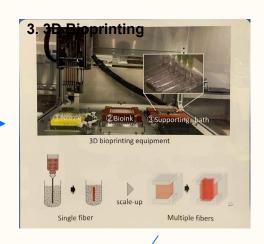
Printing of fibers with satellite cells and adipose tissue stem cells

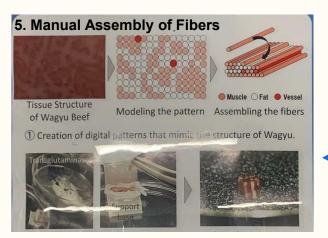
Analysis of Volatile Compounds

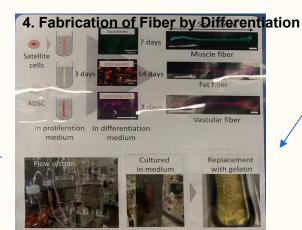
- Gas Chromatography Mass Spectrometry
 - Volatile samples are separated by GC and analyte molecules are eluted into the MS for detection

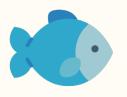

4. Fabrication Method of Each Fiber by Differentiation

 Switched to differentiation medium to induce differentiation into each fiber


5. Assembly Method for Wagyu Cultured Meat


 Manually assembling each fiber to reproduce the tissue structure of Wagyu beef


Wagyu Beef Culture Meat Production


Knowledge gained after Visiting Shimadzu Co. at Osaka

- The Wagyu beef cultured meat has DHA while the normal beef doesn't have DHA
- Cultured meat MAY have more benefits than conventional meat
- LC and GC-MS/MS can be used on wide field, including detect insect metabolite and the aroma of different chocolate

6

Examples beyond mammalian cell-cultured meat

Fish

Crustaceans

Types of cell	Muscle satellite cells	Fibroblast cells	Stem cell to myoblasts
Temperature	37°C	15 to 30°C	28°C
Oxygen concentration	High	Low	Low
Company	Upside Foods, Good Meat(USA)	Bluu Seafood Company(Germany)	Shiok Meats(Singapore)

7

Potential & Applications

- **Environmental Impact**: Potential to reduce overfishing, habitat destruction, and greenhouse gas emissions.
- Physiological Suitability: Fish cells may be uniquely suited for in vitro cultivation due to their tolerance to hypoxia, high buffering capacity, and ability to grow at lower temperatures
- Economic Feasibility: Currently, production costs for cultivated meat are high. However, as technology improves, these costs are expected to decrease.
- Market Acceptance: As production scales up and more products become available, consumer perceptions and willingness to try these novel food items will play a significant role in shaping the industry's future.

https://techcrunch.com/2023/06/ 28/bluu-seafood-reels-in-17-5m-to-bring-cultivated-fish-products-to-market/

Fish cell-based meat (Bluu seafood, fish ball)

https://www.instagram.com/goodmeatinc/p/DE3HVqvy6L8/?img_index=2

Poultry cell-based meat (Good Meats, Good Meats 3)

nttps://thefishsite.com/articles/mou-could-take-shiok-meats-cell-based-shrimp-to-vietnam

Crustacean cell-based meat (Shiok, shrimp dumpling)

Why Do We Need New Innovations?

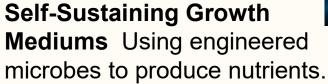
Taste & Texture

Still doesn't fully replicate traditional meat.

High Costs

Growth mediums & production are expensive.

Scalability Issues


Difficult to mass-produce efficiently.

Future Innovations in Cultured Meat

Al-Optimized Tissue Growth

Machine learning to perfect muscle structure.

Electrostimulation for Muscle Development
Simulating real animal movement for better texture.

Our Concerns: Health, Environment, and Long-Term Sustainability

Health & Safety

- Uncertainty about long-term health effects.
- Potential use of additives like dyes to replicate meat appearance.

How long will it take for regulatory bodies to ensure safety?

Environmental & Economic Impact

High production costs and energy consumption, how sustainable is it really?

Regulatory and Safety Challenges

Conclusion

Scientific Advancement: From multi-omics analysis to 3D bioprinting, biotechnology is revolutionizing medicine, food, and sustainability.

Environmental & Economic Potential: Cultivated meat could reduce overfishing, deforestation, and emissions, but challenges remain in cost, scalability, and consumer acceptance.

The Path Forward: Continued research, optimization, and policy development will determine the success of these technologies in reshaping our future.

References

- Joo, ST., Choi, JS., Hur, SJ., Kim, GD., Kim, CJ., Lee, EY., Bakhsh, A., & Hwang, YH. (2022). A Comparative Study on the Taste Characteristics of Satellite Cell Cultured Meat Derived from Chicken and Cattle Muscles. *Food Sci Anim Resour.*, 42(1):175-185
- Rubio, N., Datar, I., Stachura, D., Kaplan, D., & Krueger, K. (2019). Cell-based fish: a novel approach to seafood production and an opportunity for cellular agriculture. *Frontiers in Sustainable Food Systems*, *3*, 435832,
- Xu, E., Niu, R., Lao, J., Zhang, S., Li, J., Zhu, Y., Shi, H., Zhu, Q., Chen, Y., & Jiang, Y. (2023). Tissue-like cultured fish fillets through a synthetic food pipeline. *npj Science of Food*, *7*(1), 17,
- Yun, S. H., Lee, D. Y., Lee, J., Mariano, E., Jr., Choi, Y., Park, J., Han, D., Kim, J. S., & Hur, S. J. (2024). Current Research, Industrialization Status, and Future Perspective of Cultured Meat. *Food Sci Anim Resour*, *44*(2), 326-355

Thank You

